Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
2.
Eur Child Adolesc Psychiatry ; 33(1): 229-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36763181

RESUMEN

Half of all mental health disorders appear during adolescence, although it is still far from clear how they relate to gender (not sex) criteria. This study aims both to analyse the relationship between gender and adolescent mental health and to propose an index: the Gender Adherence Index (GAI). We used cross-sectional, secondary data from 3888 adolescents (aged 13-19) from the FRESC Health Survey on Adolescence in Barcelona. We analysed the interaction among sex, age and socio-economic status with several mental health indices. Additionally, we computed a Gender Adherence Index (GAI) to transcend the information-poor binary sex label, and thus assess to what extent mental health can be predicted by the gender expression of adolescents irrespective of their biological sex. We found that older age and lower economic status have a greater impact on the emotional distress of girls, who reported lower self-perceived mental health than boys. Nevertheless, girls obtained higher scores regarding their prosocial behaviour, which is protective against mental health problems. The GAI was retained in all statistical models stressing it as a relevant metric to explain the variability of adolescent emotional distress. Young people who showed adherence to normative femininity in their lifestyles showed higher prosocial behaviour but did not tend to present more emotional distress. Despite its limitations, this is a novel attempt to explore the relationship between gender expression and mental health. Better defined indices of gender adherence could help us to improve our predictive capacity of mental health disorders during adolescence.


Asunto(s)
Trastornos Mentales , Salud Mental , Masculino , Femenino , Humanos , Adolescente , Estudios Transversales , Trastornos Mentales/epidemiología , Trastornos Mentales/psicología , Factores Socioeconómicos , Clase Social , Factores Sexuales
3.
Ecology ; 104(11): e4118, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37282712

RESUMEN

Biogeochemical niche (BN) hypothesis aims to relate species/genotype elemental composition with its niche based on the fact that different elements are involved differentially in distinct plant functions. We here test the BN hypothesis through the analysis of the 10 foliar elemental concentrations and 20 functional-morphological of 60 tree species in a French Guiana tropical forest. We observed strong legacy (phylogenic + species) signals in the species-specific foliar elemental composition (elementome) and, for the first time, provide empirical evidence for a relationship between species-specific foliar elementome and functional traits. Our study thus supports the BN hypothesis and confirms the general niche segregation process through which the species-specific use of bio-elements drives the high levels of α-diversity in this tropical forest. We show that the simple analysis of foliar elementomes may be used to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical rainforests. Although cause and effect mechanisms of leaf functional and morphological traits in species-specific use of bio-elements require confirmation, we posit the hypothesis that divergences in functional-morphological niches and species-specific biogeochemical use are likely to have co-evolved.


Asunto(s)
Ecosistema , Árboles , Bosque Lluvioso , Guyana Francesa , Clima Tropical , Hojas de la Planta/química
5.
Ecology ; 104(6): e4049, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039427

RESUMEN

There is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition. We also compared the results between potential N-fixer and non-N-fixer species. We found a positive effect of N fertilization on stem growth and foliar N, as well as a positive effect of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing species had greater stem growth, greater foliar N, and greater foliar P concentrations than non-N-fixers. In terms of growth, there was a negative interaction between N-fixer status, N + P, and P fertilization, but no interaction with N fertilization. Because N-fixing plants do not show to be completely N saturated, we do not anticipate N providing from N-fixing plants would supply non-N-fixers. Although the soil-age hypothesis only anticipates P limitation in highly weathered systems, our results for stem growth and foliar elemental composition indicate the existence of considerable N and P co-limitation, which is alleviated in N-fixing plants. The evidence suggests that certain mechanisms invest in N to obtain the scarce P through soil phosphatases, which potentially contributes to the N limitation detected by this study.


Asunto(s)
Nitrógeno , Bosque Lluvioso , Fósforo , Clima Tropical , Bosques , Árboles , Suelo
6.
Ecol Lett ; 25(9): 1961-1973, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35875902

RESUMEN

Soil fauna plays a key role in regulating biogeochemical cycles, but how multiple global change factors (GCFs) may affect faunal communities remains poorly studied. We conducted a meta-analysis using 1154 observations to evaluate the individual and combined effects of elevated CO2 , nitrogen (N) addition, warming, increased rainfall and drought on soil fauna density and diversity. Here we show that, overall, individual and combined effects of GCFs had negligible effects on soil fauna density and diversity, except that density was negatively affected by drought (-27.4%) and positively affected by increased rainfall individually (+24.9%) and in combination with N addition (+67.3%) or warming (+70.4%). GCF effects varied among taxonomic groups both in magnitude and direction. Variables such as latitude, elevation and experimental setting significantly impacted both individual and combined effects. Our results suggest that soil fauna density is affected by changed rainfall regimes, while diversity is resistant against individual and combined effects of multiple GCFs.


Asunto(s)
Cambio Climático , Suelo , Sequías , Ecosistema , Nitrógeno/análisis , Microbiología del Suelo
7.
Ecology ; 103(2): e03599, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816429

RESUMEN

Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance-decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.


Asunto(s)
Biodiversidad , Suelo , Ecosistema , Bosques , Nutrientes , Microbiología del Suelo , Árboles
8.
Sci Total Environ ; 802: 149769, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464786

RESUMEN

Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 µg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 µg m-2 h-1) and P (sesquiterpenes: 210 µg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.


Asunto(s)
Nitrógeno , Suelo , Ecosistema , Fertilización , Bosques , Fósforo , Terpenos
9.
Plants (Basel) ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809437

RESUMEN

Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical-temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical-temperate contrast must be related to the functional role of phenolics and polyphenolics.

10.
Nat Ecol Evol ; 5(2): 184-194, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398105

RESUMEN

The possibility of using the elemental compositions of species as a tool to identify species/genotype niche remains to be tested at a global scale. We investigated relationships between the foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees of 227 species. Shared ancestry explained 60-94% of the total variance in foliar nutrient concentrations and ratios whereas current climate, atmospheric N deposition and soil type together explained 1-7%, consistent with the biogeochemical niche hypothesis which predicts that each species will have a specific need for and use of each bio-element. The remaining variance was explained by the avoidance of nutritional competition with other species and natural variability within species. The biogeochemical niche hypothesis is thus able to quantify species-specific tree niches and their shifts in response to environmental changes.


Asunto(s)
Bosques , Árboles , Clima , Suelo , Especificidad de la Especie
11.
Molecules ; 25(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32877991

RESUMEN

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


Asunto(s)
Metaboloma , Metabolómica , Fósforo/metabolismo , Bosque Lluvioso , Árboles/metabolismo , Guyana Francesa , Hojas de la Planta/metabolismo , Especificidad de la Especie
12.
Sci Rep ; 10(1): 6937, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332903

RESUMEN

Tropical rainforests harbor a particularly high plant diversity. We hypothesize that potential causes underlying this high diversity should be linked to distinct overall functionality (defense and growth allocation, anti-stress mechanisms, reproduction) among the different sympatric taxa. In this study we tested the hypothesis of the existence of a metabolomic niche related to a species-specific differential use and allocation of metabolites. We tested this hypothesis by comparing leaf metabolomic profiles of 54 species in two rainforests of French Guiana. Species identity explained most of the variation in the metabolome, with a species-specific metabolomic profile across dry and wet seasons. In addition to this "homeostatic" species-specific metabolomic profile significantly linked to phylogenetic distances, also part of the variance (flexibility) of the metabolomic profile was explained by season within a single species. Our results support the hypothesis of the high diversity in tropical forest being related to a species-specific metabolomic niche and highlight ecometabolomics as a tool to identify this species functional diversity related and consistent with the ecological niche theory.


Asunto(s)
Metabolómica , Bosque Lluvioso , Árboles/metabolismo , Análisis de Varianza , Análisis por Conglomerados , Análisis Discriminante , Guyana Francesa , Análisis de los Mínimos Cuadrados , Metaboloma , Hojas de la Planta/metabolismo , Estaciones del Año , Especificidad de la Especie
13.
Proc Biol Sci ; 286(1910): 20191300, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31480974

RESUMEN

Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.


Asunto(s)
Bosque Lluvioso , Animales , Carbono , Nitrógeno , Hojas de la Planta , Suelo/química
14.
Glob Chang Biol ; 25(8): 2727-2738, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206913

RESUMEN

Soil fauna play a fundamental role on key ecosystem functions like organic matter decomposition, although how local assemblages are responding to climate change and whether these changes may have consequences to ecosystem functioning is less clear. Previous studies have revealed that a continued environmental stress may result in poorer communities by filtering out the most sensitive species. However, these experiments have rarely been applied to climate change factors combining multiyear and multisite standardized field treatments across climatically contrasting regions, which has limited drawing general conclusions. Moreover, other facets of biodiversity, such as functional and phylogenetic diversity, potentially more closely linked to ecosystem functioning, have been largely neglected. Here, we report that the abundance, species richness, phylogenetic diversity, and functional richness of springtails (Subclass Collembola), a major group of fungivores and detritivores, decreased within 4 years of experimental drought across six European shrublands. The loss of phylogenetic and functional richness was higher than expected by the loss of species richness, leading to communities of phylogenetically similar species sharing evolutionary conserved traits. Additionally, despite the great climatic differences among study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities alone were able to explain up to 30% of the variation in annual decomposition rates. Altogether, our results suggest that the forecasted reductions in precipitation associated with climate change may erode springtail communities and likely other drought-sensitive soil invertebrates, thereby retarding litter decomposition and nutrient cycling in ecosystems.


Asunto(s)
Sequías , Ecosistema , Animales , Biodiversidad , Europa (Continente) , Filogenia
15.
Glob Chang Biol ; 25(2): 733-743, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30346103

RESUMEN

The increasing success of invasive plant species in wetland areas can threaten their capacity to store carbon, nitrogen, and phosphorus (C, N, and P). Here, we have investigated the relationships between the different stocks of soil organic carbon (SOC), and total C, N, and P pools in the plant-soil system from eight different wetland areas across the South-East coast of China, where the invasive tallgrass Spartina alterniflora has replaced the native tall grasses Phragmites australis and the mangrove communities, originally dominated by the native species Kandelia obovata and Avicennia marina. The invasive success of Spartina alterniflora replacing Phragmites australis did not greatly influence soil traits, biomass accumulation or plant-soil C and N storing capacity. However, the resulting higher ability to store P in both soil and standing plant biomass (approximately more than 70 and 15 kg P by ha, respectively) in the invasive than in the native tall grass communities suggesting the possibility of a decrease in the ecosystem N:P ratio with future consequences to below- and aboveground trophic chains. The results also showed that a future advance in the native mangrove replacement by Spartina alterniflora could constitute a serious environmental problem. This includes enrichment of sand in the soil, with the consequent loss of nutrient retention capacity, as well as a sharp decrease in the stocks of C (2.6 and 2.2 t C ha-1 in soil and stand biomass, respectively), N, and P in the plant-soil system. This should be associated with a worsening of the water quality by aggravating potential eutrophication processes. Moreover, the loss of carbon and nutrient decreases the potential overall fertility of the system, strongly hampering the reestablishment of woody mangrove communities in the future.


Asunto(s)
Carbono/análisis , Especies Introducidas , Nitrógeno/análisis , Fósforo/análisis , Poaceae/fisiología , Suelo/química , Humedales , Avicennia/fisiología , Biodiversidad , China , Dispersión de las Plantas , Rhizophoraceae/fisiología
16.
Ecology ; 98(8): 2180-2190, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28555746

RESUMEN

Host specialization has long been hypothesized to explain the extraordinary diversity of phytophagous insects in the tropics. However, addressing this hypothesis has proved challenging because of the risk of over-looking rare interactions, and hence biasing specialization estimations, and the difficulties to separate the diversity component attributable to insect specialization from that related to host diversity. As a result, the host specialization hypothesis lacks empirical support for important phytophagous insect clades. Here, we test the hypothesis in a radiation of seed-feeding insects, acorn weevils (Curculio spp.), sampled in temperate and tropical regions (California and Nicaragua, respectively) with an equivalent pool of oak host species. Using DNA sequences from three low-copy genes, we delimited to species level 778 weevil larvae extracted from host seeds and assessed their phylogenetic relationships by Maximum Likelihood and Bayesian inference. We then reconstructed the oak-weevil food webs and examined differences in alpha, beta and gamma diversity using Hill numbers of effective species. We found a higher alpha, beta and gamma diversity of weevils in Nicaragua compared to California despite similar richness of host species at both local and regional level. By means of Bayesian mixed models, we also found that tropical weevil species were highly specialized both in terms of host range and interaction strength, whereas their temperate congeners had a broader taxonomic and phylogenetic host spectrum. Finally, in Nicaraguan species, larval body size was highly correlated with the size of the acorns infested, as would be expected by a greater host specialization, whereas in California this relationship was absent. Altogether, these lines of evidence support the host specialization hypothesis and suggest contrasting eco-evolutionary dynamics in tropical and temperate regions even in absence of differences in host diversity.


Asunto(s)
Biodiversidad , Insectos/clasificación , Animales , Teorema de Bayes , California , Filogenia , Semillas , Gorgojos/clasificación
17.
J Anim Ecol ; 86(1): 136-146, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27611694

RESUMEN

Identification of the mechanisms enabling stable coexistence of species with similar resource requirements is a central challenge in ecology. Such coexistence can be facilitated by species at higher trophic levels through complex multi-trophic interactions, a mechanism that could be compromised by ongoing defaunation. We investigated cascading effects of defaunation on Pachymerus cardo and Speciomerus giganteus, the specialized insect seed predators of the Neotropical palm Attalea butyracea, testing the hypothesis that vertebrate frugivores and granivores facilitate their coexistence. Laboratory experiments showed that the two seed parasitoid species differed strongly in their reproductive ecology. Pachymerus produced many small eggs that it deposited exclusively on the fruit exocarp (exterior). Speciomerus produced few large eggs that it deposited exclusively on the endocarp, which is normally exposed only after a vertebrate handles the fruit. When eggs of the two species were deposited on the same fruit, Pachymerus triumphed only when it had a long head start, and the loser always succumbed to intraguild predation. We collected field data on the fates of 6569 Attalea seeds across sites in central Panama with contrasting degrees of defaunation and wide variation in the abundance of vertebrate frugivores and granivores. Speciomerus dominated where vertebrate communities were intact, whereas Pachymerus dominated in defaunated sites. Variation in the relative abundance of Speciomerus across all 84 sampling sites was strongly positively related to the proportion of seeds attacked by rodents, an indicator of local vertebrate abundance. SYNTHESIS: We show that two species of insect seed predators relying on the same host plant species are niche differentiated in their reproductive strategies such that one species has the advantage when fruits are handled promptly by vertebrates and the other when they are not. Defaunation disrupts this mediating influence of vertebrates and strongly favours one species at the expense of the other, providing a case study of the cascading effects of defaunation and its potential to disrupt coexistence of non-target species, including the hyperdiverse phytophagous insects of tropical forests.


Asunto(s)
Arecaceae/fisiología , Escarabajos/fisiología , Cadena Alimentaria , Herbivoria , Animales , Escarabajos/crecimiento & desarrollo , Femenino , Frutas/fisiología , Oviposición , Panamá , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...